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ABSTRACT

Box girder bridges are being made into use at many places. Various studies have been performed so as to develop
a more stable structure design by varying the shape of the bridge structure. This study is also aims at understanding the
effect of changing the basic shape on the stability of the bridge. By varying the length of the over-hanging beam section
and increasing the thickness of the joints, the variation in the stability has been studied. SAP 2000 software has been used

to apply moving load and to study the deflections and stress contours.
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INTRODUCTION

Box girder bridges are very commonly used. It is a bridge which has its main beams comprising of girders in the
shape of hollow boxes. The box girder normally comprises of pre-stressed concrete, structural steel or steel reinforced
concrete. As shown in Figure 1, a box-girder cross section may take the form of single cell (one box), multiple spine
(separate boxes), or multi-cell with a common bottom flange (continuous cells) [1]. The box girder bridge achieves its

stability mainly because of two key features: shape and pre-stressed tendons [1].
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Figure 1: Box Girder Cross Sections
Several research has been done till now on Box Girder Bridges [2]. The development of the curved beam theory
by Saint-Venant (1843) [3] and later the thin-walled beam theory by Vlasov (1965) [4] marked the birth of all research
efforts published to date on the analysis and design of straight and curved box-girder bridges. Since then, numerous
technical papers, reports, and books have been published in the literature concerning various applications of, and even

modifications to, the two theories. A comprehensive review of analytical and experimental studies on box-girder bridges
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was undertaken by Maisel (1970-85) [5-8] in England. This comprehensive review was extended by Swann (1972) [9],

Maisel et al. (1973), and Maisel (1985).

Over the developments in the past few years, several new modifications have been introduced so as to make the box girder
bridge more stable and increase its strength. These include, use of pre-stressed tendons [1], thickening of joints in the box
structure [10], modifying the over-hanging beams [11-12], use of prestressed concrete [13] and multiple box type girder

bridges [13]. This study basically covers the study of analyzing the bridge structure with thickened joints and elongated
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over-hanging beams together. Figure 2 shows the variation in the shape studied.

BRIDGE DESCRIPTION

The complete analysis of the bridge section and for the addition of prestressed tendons and loadings, SAP 2000
software has been used. The pre-defined Concrete Bridge AASHTO-PCI-ASBI has been considered for the study.
Figure 3 gives the basic structure and dimensions of the AASHTO-PCI-ASBI type bridge section as taken in SAP 2000

software. [1]

A

Figure 2: Positions of Prestressed Tendons
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Figure 3: Basic Structure and Dimensions of AASHTO-PCI-ASBI Type Bridge Section

The bridge structure was restricted to a two span and two lane section. Both the ends had fixed end supports.
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Figure 4: Two Span and Two Lane Bridge Section
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Variation in Shape Analyzed

The variation in shape as shown in Figure 2 have been studied. The marked areas show the points where the joints
are thickened and the line marked in the image shows the elongated over-hanging beam. 7 different cases were studied by
varying the loads on the bridge structure for both, the basic shape as well as the modified shape of the box Figure 5 shows

the difference of the two shapes.

b — | ———— ——— — ——
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Figure 5: Difference in Shape of the Basic and the Modified Bridge Section

BRIDGE DECK LOADING

The loading taken for the analysis of these bridge sections was a combination of three moving vehicle loads,
moving in the two lanes of the bridge deck. SAP 2000 has several pre-defined vehicle loads, and most basic type of truck
and lane loadings include: H20-44 Truck Load, HS20-44 Truck Load, H20-44L lane Load. A combination of these three
vehicle type loads have been imposed in every case so as to maintain uniform loading. Figure 6 shows the three types of
vehicle loading used for the analysss.
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H20-44 Truck Load HS20-44 Truck Load H20-44L and H320-44L Lane Loads
Figure 6: Vehicle Loads Used for Analysis

r

ANALYSIS

The SAP 2000 software gives the final results in the form of deflection curves, bending moment diagrams and
even stress contours. But for the comparative study between the several cases, stress contours have been taken as the basis
of comparison. The following cases show the position of the tendons added in the bridge structure and the corresponding

stress contour obtained after the bridge analysis.

Case |: The basic structure of the box is analyzed. The bridge section is loaded with the combination of the three

above mentioned loads.
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Figure 7: Stress Contours and Longitudinal Stress for Case |

Case Il: The same loading as in Case | for the modified shape.
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Figure 8: Stress Contours and Longitudinal Stress for Case - Il

Case I11: Double the load in basic structure analysis case.
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Figure 9: Stress Contours and Longitudinal Stress for Case 111
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Case IV: Same loading as in Case — Ill on the modified structure
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Figure 10: Stress Contours and Longitudinal Stress for Case IV

Case V: Triple loading for basic structure analysis case.
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B0 BO8IT - Erbre Brdge Sechon (Caze MOVEY] Longiudral Siress - Top Canter [517]

£000, M Yalua = 15123453 Min'Value = 5188.63
Figure 11: Stress Contours and Longitudinal Stress for Case V

Case VI: Same loading as in Case — V for the modified shape.
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Figure 12: Stress Contours and Longitudinal Stress for Case VI
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RESULTS AND DISCUSSIONS

The conclusion of entire analysis was obtained by comparing the stress contours of the different cases. After the
complete analysis of the basic structure of the box girder bridge by using different loadings and making some
modifications in the shape of the box, it was concluded that the mores table structure of the two cases for this box shape is

the modified one with elongated over-hanging beams and thickened joints.

This shape of the box of a modified box girder bridge has some peculiar features like: the increased thickness at
the fixed end of the cantilever beam, increased thickness at the bottom most portion of the box structure and sloping edges.
Longer the cantilever beam more is the thickness of the entire section from the free end to the fixed end. This provides us
more thickness at the fixed portions and also helps us to reduce the stress acting on the entire span of the beam. The benefit

of this is that the bending moment acting at the fixed end is reduced and the beambecomes more stable.

The second peculiarity of this type of structure is the thickness at the bottom of the box This thickness proves to
be useful because the stress transferred through the sloping edges from the bridge deck to the bottom of the box is easily

distributed. The join at the base between the horizontal edge and sloping edge is weak and hence making it thick increases

N —

.

Figure 13: Modified Positions in the Basic Shape of the Bridge Section

the efficiency.
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